Ark of the Covenant - Bible History Online

Bible History Online

Sub Categories
Aeschines
Andronicus Rhodius
Apollodorus of Athens
Aspasius
Acacius of Caesarea
Acacius of Caesarea
Acestorides
Achaeus
Achaeus of Eretria
Achaeus of Eretria
Acron
Acrotatus I
Acrotatus II
Acusilaus
Adeimantus
Adrianus
Aedesius
Aeimnestus
Aelianus Tacticus
Aelius Aristides
Aelius Herodianus
Aelius Theon
Aeneas Tacticus
Aenesidemus
Aenesidemus
Aeropus II of Macedon
Aeschines Socraticus
Aeschylus
Aesop
Aetion
Aetius
Agarista
Agariste
Agariste of Sicyon
Agasias
Agasicles
Agathias
Agathinus
Agathocles
Agathocles of Bactria
Agathon
Ageladas
Agesander
Agesilaus I
Agesilaus II
Agesipolis I
Agesipolis II
Agesipolis III
Agis I
Agis II
Agis III
Agis IV
Agoracritus
Agrippa
Agyrrhius
Albinus
Alcaeus
Alcamenes
Alcamenes
Alcetas I of Macedon
Alcibiades
Alcidamas
Alciphron
Alcmaeon of Croton
Alcman
Alcmenes
Alexander Aetolus
Alexander Balas
Alexander Cornelius
Alexander I of Epirus
Alexander II of Epirus
Alexander of Abonuteichos
Alexander of Aphrodisias
Alexander of Greece
Alexander of Pherae
Alexander Polyhistor
Alexander The Great
Alexis
Alypius
Ameinocles
Ameipsias
Amelesagoras
Amelius
Ammonius Grammaticus
Ammonius Hermiae
Ammonius Saccas
Amphis
Amynander
Anacharsis
Anacreon
Anaxagoras
Anaxander
Anaxandrides
Anaxarchus
Anaxidamus
Anaxilas
Anaxilas of Rhegium
Anaxilaus
Anaximander
Anaximenes of Lampsacus
Anaximenes of Miletus
Andocides
Andriscus
Andron
Andron
Andronicus of Cyrrhus
Andronicus of Cyrrhus
Andronicus Rhodius
Androsthenes
Androtion
Anniceris
Anonymus
Anser
Antalcidas
Anthemius of Tralles
Antigenes
Antigonus II Gonatas
Antigonus III Doson
Antigonus III of Macedon
Antigonus of Carystus
Antimachus
Antimachus I
Antinous
Antiochus I Soter
Antiochus II Theos
Antiochus III the Great
Antiochus IV Epiphanes
Antiochus IX Cyzicenus
Antiochus of Ascalon
Antiochus V Eupator
Antiochus VI Dionysus
Antiochus VII Sidetes
Antiochus VIII Grypus
Antiochus X Eusebes
Antiochus XI Ephiphanes
Antiochus XI Ephiphanes
Antiochus XIII Asiaticus
Antipater
Antipater II of Macedon
Antipater of Sidon
Antipater of Tarsus
Antipater of Thessalonica
Antipater of Tyre
Antiphanes
Antiphilus
Antiphon
Antisthenes
Antoninus Liberalis
Antonius Diogenes
Antyllus
Anyte of Tegea
Anytos
Apelles
Apellicon
Apellicon
Apion
Apollocrates
Apollodorus
Apollodorus of Carystus
Apollodorus of Damascus
Apollodorus of Pergamon
Apollodorus of Seleuceia on the Tigris
Apollodotus I
Apollonius
Apollonius Molon
Apollonius of Citium
Apollonius of Perga
Apollonius of Rhodes
Apollonius of Tyana
Apollophanes
Apollos
Appian
Apsines
Araros
Aratus
Arcesilaus
Archedemus of Tarsus
Archelaus
Archelaus I
Archelaus II
Archermus
Archestratus
Archias
Archidamus I
Archidamus II
Archidamus III
Archidamus IV
Archidamus V
Archigenes
Archilochus
Archimedes
Archytas
Arctinus
Aretaeus
Areus I
Areus II
Argas
Arion
Aristaeus
Aristagoras
Aristander of Telmessus
Aristarchus of Samos
Aristarchus of Samothrace
Aristarchus of Tegea
Aristeas
Aristides
Aristides Quintilianus
Aristippus
Aristobulus
Aristocles
Aristodemus
Aristogiton
Aristomenes
Ariston (king of Sparta)
Ariston of Alexandria
Ariston of Ceos
Ariston of Chios
Aristonicus
Aristonymus
Aristophanes
Aristophanes of Byzantium
Aristophon
Aristotle
Aristoxenus
Arius
Arius Didymus
Arrian
Arsinoe I of Egypt
Arsinoe II of Egypt
Arsinoe III of Egypt
Artemidorus
Artemisia
Artemon
Asclepiades
Asclepiodotus
Asius
Aspasia - hetaera
Athenaeus
Athenaeus
Athenagoras of Athens
Athenodorus
Attalus I
Attalus II
Attalus III
Autocrates
Autolycus of Pitane
Avaris
Babrius
Bacchylides
Basil of Caesarea
Basilides
Bathycles of Magnesia
Battus
Berenice I of Egypt
Berenice II of Egypt
Berenice IV of Egypt
Bias of Priene
Bion
Biton
Boethus
Boethus of Sidon
Bolus
Brasidas
Bryson
Bupalus
Cadmus of Miletus
Caecilius of Calacte
Caesarion
Calamis
Calliades
Callias
Callicrates
Callimachus
Callimachus
Callimachus (polemarch)
Callimachus (sculptor)
Callinus
Calliphon
Callippus
Callisthenes
Callistratus
Carcinus (writer)
Carneades
Cassander
Castor of Rhodes
Cebes
Celsus
Cephisodotus
Cercidas
Cercops of Miletus
Chabrias
Chaeremon
Chaeremon of Alexandria
Chaeris
Chamaeleon
Chares of Athens
Chares of Lindos
Chares of Mytilene
Charidemus
Chariton
Charmadas
Charon of Lampsacus
Charondas
Chilon
Chionides
Choerilus
Choerilus of Iasus
Choerilus of Samos
Chremonides
Christodorus
Chrysanthius
Chrysippus
Cimon
Cimon of Cleonae
Cineas
Cinesias
Cleandridas
Cleanthes
Clearchus of Rhegium
Clearchus of Soli
Clearchus of Sparta
Cleidemus
Cleinias
Cleisthenes
Cleisthenes of Sicyon
Cleitarchus
Cleitus
Clement of Alexandria
Cleombrotus I
Cleomedes
Cleomenes I
Cleomenes II
Cleomenes III
Cleomenes of Naucratis
Cleon
Cleonides
Cleonymus
Cleopatra I of Egypt
Cleopatra II of Egypt
Cleopatra III of Egypt
Cleopatra IV of Egypt
Cleopatra Thea
Cleopatra V of Egypt
Cleopatra V of Egypt
Cleopatra VI of Egypt
Cleopatra VII of Egypt
Cleophon
Clitomachus (philosopher)
Colaeus
Colluthus
Colotes
Conon
Conon (mythographer)
Conon of Samos
Corinna
Cosmas Indicopleustes
Crantor
Craterus of Macedon
Crates of Mallus
Crates of Thebes
Cratippus
Cresilas
Critias
Critius
Crito
Critolaus
Croesus
Ctesias
Ctesibius
Cylon
Cynaethus
Cynegeirus
Cynisca
Cypselus
Damascius
Damasias
Damastes
Damocles
Damon of Athens
Damophon
Dares of Phrygia
Deinocrates
Demades
Demaratus
Demetrius I of Bactria
Demetrius I of Syria
Demetrius I Poliorcetes
Demetrius II
Demetrius II of Macedon
Demetrius II of Syria
Demetrius III Eucaerus
Demetrius III Eucaerus
Demetrius of Alopece
Demetrius of Magnesia
Demetrius of Pharos
Demetrius of Scepsis
Demetrius Phalereus
Demetrius the Cynic
Demetrius the Fair
Democedes
Democritus
Demonax
Demonax (lawmaker)
Demosthenes
Demosthenes (general)
Dercyllidas
Dexippus
Diagoras
Diagoras of Rhodes
Dicaearchus
Dictys Cretensis
Didymus Chalcenterus
Didymus the Blind
Didymus the Musician
Dienekes
Dinarchus
Dinocrates
Dinon
Dio Chrysostom
Diocles
Diocles of Carystus
Diocles of Magnesia
Diodorus Cronus
Diodorus Siculus
Diodotus II
Diodotus of Bactria
Diodotus the Stoic
Diodotus Tryphon
Diogenes Apolloniates
Diogenes Laertius
Diogenes of Babylon
Diogenes of Oenoanda
Diogenes of Sinope
Diogenes of Tarsus
Diogenianus
Diomedes
Dion
Dionysius Chalcus
Dionysius of Byzantium
Dionysius of Halicarnassus
Dionysius of Heraclea
Dionysius of Phocaea
Dionysius of Syracuse
Dionysius Periegetes
Dionysius the Areopagite
Diophantus
Dios
Dioscorides
Diotimus
Diphilus
Dorotheus
Dorotheus of Sidon
Dositheus
Draco
Dracon
Duris
Echecrates
Ecphantus
Empedocles
Epaminondas
Ephialtes
Ephialtes of Trachis
Ephippus
Ephorus
Epicharmus of Kos
Epicrates
Epictetus
Epicurus
Epigenes
Epilycus
Epimenides
Epiphanius of Salamis
Epitadeus
Erasistratus
Eratosthenes
Erinna
Eubulides of Miletus
Eubulus (statesman)
Eucleidas
Eucleides
Euclid
Eucratides
Euctemon
Eudamidas I
Eudemus
Eudemus of Rhodes
Eudorus of Alexandria
Eudoxus of Cnidus
Eudoxus of Cyzicus
Euenus
Eugammon
Euhemerus
Eumenes I
Eumenes II
Eumenes of Cardia
Eumenius
Eumolpidae
Eunapius
Eunomus
Euphantus
Euphemus
Euphorion
Euphranor
Euphronius
Eupolis
Euripides
Eurybatus
Eurybiades
Eurycrates
Eurycratides
Eurylochus
Eurymedon
Eurypon
Eurysthenes
Eusebius of Caesarea
Euthydemus
Euthydemus I
Euthydemus II
Euthymides
Eutychides
Evagoras
Execias
Galen
Gelo
Glaphyra - hetaera
Glaucus of Chios
Gorgias
Gorgidas
Gregory Nazianzus
Gregory of Nyssa
Gylippus
Hagnon
Hagnothemis
Harmodius and Aristogeiton
Harpalus
Hecataeus of Abdera
Hecataeus of Miletus
Hecato of Rhodes
Hecatomnus
Hedylus
Hegemon of Thasos
Hegesander
Hegesias of Cyrene
Hegesias of Magnesia
Hegesippus
Hegesistratus
Heliocles
Heliodorus
Hellanicus
Hellanicus of Lesbos
Hephaestion
Hephaistio of Thebes
Heracleides
Heraclides Ponticus
Heraclitus
Hermaeus
Hermagoras
Hermias (philosopher)
Hermias of Atarneus
Hermippus
Hermocrates
Hero of Alexandria
Herodotus
Herophilus
Herostratus
Hesiod
Hesychius of Alexandria
Hicetas
Hiero I of Syracuse
Hiero II of Syracuse
Hierocles of Alexandria
Hippalus
Hipparchus
Hipparchus (son of Pisistratus)
Hippias
Hippias (son of Pisistratus)
Hippocleides
Hippocrates
Hippodamus
Hipponax
Hipponicus
Histiaeus
Homer
Hypatia of Alexandria
Hyperbolus
Hypereides
Hypsicles
Iamblichus (philosopher)
Iambulus
Iasus
Ibycus
Ictinus
Ion of Chios
Iophon
Iphicrates
Irenaeus
Isaeus
Isagoras
Isidore of Alexandria
Isidorus of Miletus
Isocrates
Isyllus
Jason of Pherae
John Chrysostom
Karanus of Macedon
Karkinos
Kerykes
King Nicias
Koinos of Macedon
Lacedaimonius
Laches
Lacydes
Lais of Corinth
Lais of Hyccara
Lamachus
Lamprocles
Lasus of Hermione
Leochares
Leon
Leonidas I
Leonidas II
Leonnatus
Leosthenes
Leotychides
Lesbonax
Lesches
Leucippus
Libanius
Livius Andronicus
Lobon
Longinus
Longus
Lucian
Lycophron
Lycortas
Lycurgus
Lycurgus of Arcadia
Lycurgus of Athens
Lycurgus of Nemea
Lycurgus of Sparta
Lycurgus of Thrace
Lycus
Lydiadas
Lysander
Lysanias
Lysias
Lysimachus
Lysippus
Lysis
Lysistratus
Machaon
Machon
Marcellinus
Marcellus of Side
Marinus
Marsyas of Pella
Maximus of Smyrna
Megacles
Megasthenes
Meidias
Melanippides
Melanthius
Melas
Meleager of Gadara
Melesagoras of Chalcedon
Meletus
Melissus of Samos
Memnon of Rhodes
Menaechmus
Menander
Menander of Ephesus
Menander of Laodicea
Menander the Just
Menecrates of Ephesus
Menedemus (Cynic)
Menedemus of Eretria
Menelaus of Alexandria
Menexenus
Menippus
Meno
Menodotus of Nicomedia
Mentor of Rhodes
Metagenes
Meton
Metrodorus
Metrodorus of Chios
Metrodorus of Lampsacus (the elder)
Metrodorus of Lampsacus (the younger)
Metrodorus of Scepsis
Metrodorus of Stratonicea
Micon
Milo of Croton
Miltiades
Mimnermus
Mindarus
Mnaseas
Mnesicles
Moeris
Moschion (physician)
Moschion (tragic poet)
Moschus
Musaeus
Myia
Myron
Myronides
Myrtilus
Myrtis
Nabis
Nearchus
Nicander
Nicarchus
Nicias
Nicocreon
Nicomachus
Nicomachus of Thebes
Nicomedes I of Bithynia
Nicomedes II of Bithynia
Nicomedes III of Bithynia
Nicomedes IV of Bithynia
Olympias
Olympiodorus of Thebes
Onomacritus
Orestes of Macedon
Origen
Paeonius
Pagondas
Palladas
Pamphilus
Panaetius of Rhodes
Pantaleon
Parmenides
Parmenion
Parrhasius
Paulus Aegineta
Paulus Alexandrinus
Pausanias
Pausanias of Macedon
Pausanias of Sparta
Pedanius Dioscorides
Peisander
Pelopidas
Perdiccas I of Macedon
Perdiccas II of Macedon
Perdiccas III of Macedon
Periander
Pericles
Perseus
Perseus of Macedon
Phaedo of Elis
Phalaris
Pherecydes of Leros
Pherecydes of Syros
Phidias
Phidippides
Philetaerus
Philip I Philadelphus
Philip II of Macedon
Philip II Philoromaeus
Philip III of Macedon
Philip IV of Macedon
Philip V of Macedon
Philistus
Philitas of Cos
Philo
Philochorus
Philolaus
Philoxenos of Eretria
Philoxenus
Phocion
Phocylides
Phormio
Phryne
Phrynichus
Pigres of Halicarnassus
Pindar
Pisistratus
Pittacus of Mytilene
Plato
Pleistarchus
Pleistoanax
Plotinus
Plutarch
Polemo
Polybius
Polycarp
Polycrates
Polydectes
Polydorus
Polygnotus
Polykleitos
Polykleitos
Polyperchon
Porphyry
Posidippus
Posidonius
Pratinas
Praxilla
Praxiteles
Procles
Proclus
Prodicus
Protagoras
Proteas
Prusias I of Bithynia
Prusias II of Bithynia
Prytanis
Ptolemy
Ptolemy I of Egypt
Ptolemy I of Macedon
Ptolemy II of Egypt
Ptolemy III of Egypt
Ptolemy IV of Egypt
Ptolemy IX of Egypt
Ptolemy Philadelphus
Ptolemy V of Egypt
Ptolemy VI of Egypt
Ptolemy VII of Egypt
Ptolemy VIII of Egypt
Ptolemy X of Egypt
Ptolemy XI of Egypt
Ptolemy XII of Egypt
Ptolemy XIII of Egypt
Ptolemy XIV of Egypt
Pyrrho
Pyrrhus of Epirus
Pythagoras
Pytheas
Rhianus
Sappho
Satyros
Satyrus
Scopas
Scopas of Aetolia
Scylax of Caryanda
Seleucus I Nicator
Seleucus II Callinicus
Seleucus III Ceraunus
Seleucus IV Philopator
Seleucus V Philometor
Seleucus VI Epiphanes
Seleucus VII Kybiosaktes
Sextus Empiricus
Simmias
Simonides of Amorgos
Simonides of Ceos
Socrates
Socrates Scholasticus
Solon
Soos
Sophocles
Sophytes
Sosicles (statesman)
Sosigenes
Sosthenes of Macedon
Sostratus
Spartacus
Speusippus
Sporus of Nicaea
Stesichorus
Stesimbrotus
Stilpo
Stobaeus
Strabo
Strato of Lampsacus
Straton of Sardis
Teleclus
Terence
Terpander
Thais
Thales
Thallus
Theagenes of Megara
Theagenes of Rhegium
Theages
Theano
Themistocles
Theocritus
Theodectes
Theodorus of Cyrene
Theodorus of Gadara
Theodorus of Samos
Theodotus of Byzantium
Theognis of Megara
Theon of Alexandria
Theon of Smyrna
Theophilus
Theophrastus
Theopompus
Theopompus
Theramenes
Theron
Thespus
Thessalus
Thibron
Thrasybulus
Thrasyllus
Thrasymachus
Thucydides
Thucydides
Timaeus of Locres
Timaeus of Tauromenium
Timagenes
Timanthes
Timocharis
Timoclea
Timocrates
Timocreon
Timoleon
Timon of Phlius
Timotheus (sculptor)
Timotheus of Athens
Timotheus of Miletus
Triphiodorus or Tryphiodorus
Tyrimmas of Macedon
Tyrtaeus
Ulysses
Xanthippe
Xanthippus
Xenarchus
Xenocles
Xenocrates
Xenocrates of Aphrodisias
Xenophanes
Xenophilus
Xenophon
Xenophon of Ephesus
Zaleucus
Zeno of Citium
Zeno of Elea
Zeno of Sidon
Zenobius
Zenodorus
Zenodotus
Zeuxidamas
Zeuxis and Parrhasius
Zoilus
Zosimas

Back to Categories

March 27    Scripture

People - Ancient Greece: Diophantus
Ancient Greek mathematician and sometimes called "the father of algebra."

Diophantus in Harpers Dictionary of Classical Antiquities (Διόφαντος). A mathematician of Alexandria, who, according to the most received opinion, was contemporary with the emperor Julian. This opinion is founded upon a passage of Abulfaraj, an Arabian author of the thirteenth century. He names, among the contemporaries of the emperor Julian , Diophantes (for Diophantus) as the author of a celebrated work on algebra and arithmetic; and he is thought to have derived his information from an Arabic commentator on Diophantus, Muhammed al Buziani, who flourished about the end of the eleventh century. The reputation of Diophantus was so great among the ancients that they ranked him with Pythagoras and Euclid. From his epitaph in the Anthology the following particulars of his life have been collected: that he was married when thirty-three years old, and had a son five years after; that the son died at the age of forty-two, and that Diophantes did not survive him above four years; whence it appears that Diophantus was eighty-four years old when he died. Diophantus wrote a work entitled Ἀριθμητικά, in thirteen books, of which only six remain. It would seem that in the fifteenth, and even at the beginning of the seventeenth, century all the thirteen books still existed. The arithmetic of Diophantus is not merely important for the study of the history of mathematics, but is interesting also to the mathematician himself from its furnishing him with luminous methods for the resolution of analytical problems. We find in it, moreover, the first trace of that branch of the exact sciences called algebra. There exists also a second work of Diophantus, on Polygon Numbers (Περὶ Πολυγόνων Ἀριθμῶν). He himself cites a third, under the title of Πορίσματα, or Corollaries. A good edition of Diophantus is still that of Fermat (Toulouse, 1670). It is based upon that of Meziriac (Paris, 1621), with additions. A valuable translation of the Arithmetica into German was published by Otto Schulz (Berlin, 1822). The latest edition of the text is by Tannery (Leipzig, 1893). On the so-called Diophantine Analysis, see Euler's Algebra, pt. ii. The reader is referred to Heath's Diophantos of Alexandria (1885).
http://tiny.cc/6hchf


Diophantus in Wikipedia Diophantus of Alexandria (Greek: Διόφαντος ὁ Ἀλεξανδρεύς. b. between 200 and 214 CE, d. between 284 and 298 CE), sometimes called "the father of algebra", was an Alexandrian Greek mathematician and the author of a series of books called Arithmetica. These texts deal with solving algebraic equations, many of which are now lost. In studying Arithmetica, Pierre de Fermat concluded that a certain equation considered by Diophantus had no solutions, and noted without elaboration that he had found "a truly marvelous proof of this proposition," now referred to as Fermat's Last Theorem. This led to tremendous advances in number theory, and the study of Diophantine equations ("Diophantine geometry") and of Diophantine approximations remain important areas of mathematical research. Diophantus was the first Greek mathematician who recognized fractions as numbers; thus he allowed positive rational numbers for the coefficients and solutions. In modern use, Diophantine equations are usually algebraic equations with integer coefficients, for which integer solutions are sought. Diophantus also made advances in mathematical notation. Biography Little is known about the life of Diophantus. He lived in Alexandria, Egypt, probably from between 200 and 214 to 284 or 298 AD. While most scholars consider Diophantus to have been a Greek,[1][2][3][4] others speculate him to have been a non-Greek,[5] possibly either a Hellenized Babylonian,[6] an Egyptian,[4][7] a Jew, or a Chaldean.[8] Much of our knowledge of the life of Diophantus is derived from a 5th century Greek anthology of number games and strategy puzzles. One of the problems (sometimes called his epitaph) states: 'Here lies Diophantus,' the wonder behold. Through art algebraic, the stone tells how old: 'God gave him his boyhood one-sixth of his life, One twelfth more as youth while whiskers grew rife; And then yet one-seventh ere marriage begun; In five years there came a bouncing new son. Alas, the dear child of master and sage After attaining half the measure of his father's life chill fate took him. After consoling his fate by the science of numbers for four years, he ended his life.' This puzzle implies that Diophantus lived to be about 84 years old. However, the accuracy of the information cannot be independently confirmed. In popular culture, this puzzle was the Puzzle No.142 in Professor Layton and Pandora's Box as one of the hardest solving puzzles in the game, which needed to be unlocked by solving other puzzles first. Arithmetica The Arithmetica is the major work of Diophantus and the most prominent work on algebra in Greek mathematics. It is a collection of problems giving numerical solutions of both determinate and indeterminate equations. Of the original thirteen books of which Arithmetica consisted only six have survived, though there are some who believe that four Arab books discovered in 1968 are also by Diophantus.[9] Some Diophantine problems from Arithmetica have been found in Arabic sources. It should be mentioned here that Diophantus never used general methods in his solutions. Hermann Hankel, renowned German mathematician made the following remark regarding Diophantus. “Our author (Diophantos) not the slightest trace of a general, comprehensive method is discernible; each problem calls for some special method which refuses to work even for the most closely related problems. For this reason it is difficult for the modern scholar to solve the 101st problem even after having studied 100 of Diophantos’s solutions” History Like many other Greek mathematical treatises, Diophantus was forgotten in Western Europe during the so-called Dark Ages, since the study of ancient Greek had greatly declined. The portion of the Greek Arithmetica that survived, however, was, like all ancient Greek texts transmitted to the early modern world, copied by, and thus known to, medieval Byzantine scholars. In addition, some portion of the Arithmetica probably survived in the Arab tradition (see above). In 1463 German mathematician Regiomontanus wrote: “No one has yet translated from the Greek into Latin the thirteen books of Diophantus, in which the very flower of the whole of arithmetic lies hidden . . . .” Arithmetica was first translated from Greek into Latin by Bombelli in 1570, but the translation was never published. However, Bombelli borrowed many of the problems for his own book Algebra. The editio princeps of Arithmetica was published in 1575 by Xylander. The best known Latin translation of Arithmetica was made by Bachet in 1621 and became the first Latin edition that was widely available. Pierre de Fermat owned a copy, studied it, and made notes in the margins. Margin writing by Fermat and Chortasmenos The 1621 edition of Arithmetica by Bachet gained fame after Pierre de Fermat wrote his famous "Last Theorem" in the margins of his copy: “If an integer n is greater than 2, then an + bn = cn has no solutions in non-zero integers a, b, and c. I have a truly marvelous proof of this proposition which this margin is too narrow to contain.” Fermat's proof was never found, and the problem of finding a proof for the theorem went unsolved for centuries. A proof was finally found in 1994 by Andrew Wiles after working on it for seven years. It is believed that Fermat did not actually have the proof he claimed to have. Although the original copy in which Fermat wrote this is lost today, Fermat's son edited the next edition of Diophantus, published in 1670. Even though the text is otherwise inferior to the 1621 edition, Fermat's annotations—including the "Last Theorem"—were printed in this version. Fermat was not the first mathematician so moved to write in his own marginal notes to Diophantus; the Byzantine scholar John Chortasmenos (14th/15th C.) had written "Thy soul, Diophantus, be with Satan because of the difficulty of your theorems" next to the same problem. Other works Diophantus wrote several other books besides Arithmetica, but very few of them have survived. The Porisms Diophantus himself refers to a work which consists of a collection of lemmas called The Porisms (or Porismata), but this book is entirely lost. Some scholars think that The porisms may have actually been a section of Arithmetica that is now lost.[citation needed] Although The Porisms is lost, we know three lemmas contained there, since Diophantus refers to them in the Arithmetica. One lemma states that the difference of the cubes of two rational numbers is equal to the sum of the cubes of two other rational numbers, i.e. given any a and b, with a > b, there exist c and d, all positive and rational, such that a^3 - b^3 = c^3 + d^3.\ Polygonal numbers and geometric elements Diophantus is also known to have written on polygonal numbers, a topic of great interest to Pythagoras and Pythagoreans. Fragments of a book dealing with polygonal numbers are extant. A book called Preliminaries to the Geometric Elements has been traditionally attributed to Hero of Alexandria. It has been studied recently by Wilbur Knorr, who suggested that the attribution to Hero is incorrect, and that the true author is Diophantus.[10] Influence Diophantus' work has had a large influence in history. Editions of Arithmetica exerted a profound influence on the development of algebra in Europe in the late sixteenth and through the seventeenth and eighteenth centuries. Diophantus and his works have also influenced Arab mathematics and were of great fame among Arab mathematicians. Diophantus' work created a foundation for work on algebra and in fact much of advanced mathematics is based on algebra. As far as we know Diophantus did not affect the lands of the Orient much and how much he affected India is a matter of debate. The father of algebra? Diophantus is often called “the father of algebra" because he contributed greatly to number theory, mathematical notation, and because Arithmetica contains the earliest known use of syncopated notation.[11] However, it seems that many of the methods for solving linear and quadratic equations used by Diophantus go back to Babylonian mathematics. For this reason mathematical historian Kurt Vogel writes[citation needed]: “Diophantus was not, as he has often been called, the father of algebra. Nevertheless, his remarkable, if unsystematic, collection of indeterminate problems is a singular achievement that was not fully appreciated and further developed until much later.” Diophantine analysis Today Diophantine analysis is the area of study where integer (whole number) solutions are sought for equations, and Diophantine equations are polynomial equations with integer coefficients to which only integer solutions are sought. It is usually rather difficult to tell whether a given Diophantine equation is solvable. Most of the problems in Arithmetica lead to quadratic equations. Diophantus looked at 3 different types of quadratic equations: ax2 + bx = c, ax2 = bx + c, and ax2 + c = bx. The reason why there were three cases to Diophantus, while today we have only one case, is that he did not have any notion for zero and he avoided negative coefficients by considering the given numbers a,b,c to all be positive in each of the three cases above. Diophantus was always satisfied with a rational solution and did not require a whole number which means he accepted fractions as solutions to his problems. Diophantus considered negative or irrational square root solutions "useless", "meaningless", and even "absurd". To give one specific example, he calls the equation 4 = 4x + 20 'absurd' because it would lead to a negative value for x. One solution was all he looked for in a quadratic equation. There is no evidence that suggests Diophantus even realized that there could be two solutions to a quadratic equation. He also considered simultaneous quadratic equations. Mathematical notation Diophantus made important advances in mathematical notation. He was the first person to use algebraic notation and symbolism. Before him everyone wrote out equations completely. Diophantus introduced an algebraic symbolism that used an abridged notation for frequently occurring operations, and an abbreviation for the unknown and for the powers of the unknown. Mathematical historian Kurt Vogel states: “The symbolism that Diophantus introduced for the first time, and undoubtedly devised himself, provided a short and readily comprehensible means of expressing an equation... Since an abbreviation is also employed for the word ‘equals’, Diophantus took a fundamental step from verbal algebra towards symbolic algebra.”[citation needed] Although Diophantus made important advances in symbolism, he still lacked the necessary notation to express more general methods. This caused his work to be more concerned with particular problems rather than general situations. Some of the limitations of Diophantus' notation are that he only had notation for one unknown and, when problems involved more than a single unknown, Diophantus was reduced to expressing "first unknown", "second unknown", etc. in words. He also lacked a symbol for a general number n. Where we would write (12 + 6n) / (n2 − 3), Diophantus has to resort to constructions like : ... a sixfold number increased by twelve, which is divided by the difference by which the square of the number exceeds three. Algebra still had a long way to go before very general problems could be written down and solved succinctly.
http://en.wikipedia.org/wiki/Diophantus


If you notice a broken link or any error PLEASE report it by clicking HERE
© 1995-2016 Bible History Online





More Bible History